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ABSTRACT
The solvability of the nonlinear operator equation
w=x + Bx, where B is accretive in a general Banach
space X is studied by means of discrete approximations.
_In particular, an algorithm is given for solving the equation

in the case that B is continuous and everywhere defined.
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ON THE RANGE OF ACCRETIVE OPERATORS
Michael G. CrandallT & Amnon Pazy

Introduction.

Let X be a real Banach space and let B :D(B) C X - X be a
nonlinear operator. B is called accretive if

||xl - xZII < ||xl - X, + MBx, - sz)ll for X >0, x,x, ¢ D(B).
If B is accretive, then B is m-accretive if X = R(I + B), i.e. for every
we X there is an xe¢ D(B) such that w = x + Bx. One of the first results
in the study of accretive operators was obtained by G. Minty [5] and implied
that every continuous everywhere defined accretive operator in a Hilbert
space is m-accretive. This latter result was extended to general Banach

spaces by R. Martin [4]. The known proofs of Martin's theorem employ the

solvability of the initial-value problem

3%4- Au = 0
(1)
W) = X

where A is continuous and accretive on X . The existence theory for
equation (1) has been generalized to allow cases in which A is neither
continuous nor single-valued. For recent developments see,

e.g., Y. Kobayashi [3] and M. Pierre [7,8]. This existence theory is rather
technical and complex. The present paper was motivated by the desire to
find a proof of the 3bove mentioned theorem of Martin which is direct, con-

structive and which does not rely on the solvability of (1).

tSupported in part by NSF grant MCS 76-10227

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024,




If B is continuous, everywhere defined and accretive we show in

Theorem 2 of Section | how to choose numbers «, ¢ (0,1] so that the se-

k

quence defined by x (1 )(Bxk-z) converges to the unique

k¢l T Tkael™k T %4l

depends on x, and

solution X, of X * wa = 2. (The choice of «a K

k+l

al S ak‘) In fact, our main results easily adapt to provide elementary
proofs (i.e., proofs not relying on (1)) of the strong generalizations of Martin's
theorem obtained in [3] and [6]. In particular, the perturbation theorem of
Webb [9] as generalized by Barbu [1] follows easily.

The main results are stated in Section | and proved in Section 2. Then

various known results are obtained as applications in the final Section 3.

1. The Main Results.

Let B be a mapping from X to the subsets of X which is accretive,

i. e,
(1.1) ||x1 - X, + My, - y2)|| > ||x1 - xZ||
for X >0, Y, € Bxi, X, ¢ D(B) = {xe¢ X:Bx # ¢}. Given we X we consider

the solvability of the problem we¢ R(I + B), i.e. can we find xe¢ X such
that we x + Bx (equivalently, w - xe¢ Bx). Replacing B by Bw where

wa = Bx - w we reduce to the case w =0 .

Definition: A sequence {xk }:—0 is admissible for the problem 0 ¢ R(I + B)
if there exist Y € Bxk and numbers hk >0, k=1,2,... such that

0
(1) Z h, = ®
T
w .
s IZ“"m "X Mg gl < . ?

(1.2)

.
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(2.9) JIx, -x |l <llx, +y, I T a+n)"+) nlz |l + ) hlz]
i) e * Vel L) E kel ® % g 1
o] Q0 l
for i>j>1¢, Since?h:w,H (LR 5 " =0,
== & Mk k
k=1 k=£+1
Thus by (2.9)
¢ o}
(2.10) lim sup ||x, - x| < 2 Y h Nz,
i,j—» £+1

for all ¢ . Letting £ - © we find that {xk} is a Cauchy sequence and

hence convergent.
[* o]

The other possibility is that Z hk <%, This time we use the
k=0

assertion

i i
e -x, 0l <lix, ¢y, Il 2 b+ nijz] 1>,
bt gl L T
from Lemma 1. Now Lemma 2 (with A=0, B = ||xl +Y, ||) implies

i i
Ix - x Il <llx, +y, Il 2 h +) hlzl + i h llz |-
A G O T T R PR PR
Letting i,j - © we again find (2.10) (since th<°°), and {xk} is Cauchy

as before.

Proof of Theorem 1. Part (a) is an immediate consequence of Lemma 3. To

obtain part (b) let klim xk =Xy and y ¢ Bx. Rewriting (2.1) we have
- 00
1

kel =Y = P (% s

o L8 R+t ¥ Peat kel ~ el

- X
Since B is accretive

(2.12) fix ., - x| < ]lka - X+ My, - 21| for A\>0.

Substitute (2.11) in (2.12), multiply by th/k and manipulate to find:




ad me

h
: g k+]
M+ b DI X < xe-xl+ by iz D+ - A T U W SN
h
K+l
e R RN P AN PR P
h
K+l h
+ B - j Z ;
Ih¢ I WY Lo RV L IR W —l:-—+—1||xk+l-x||

and therefore

(2.13) (1+h,  )fxx _J < ||x-xk|| &% | x- X4t A(x+y) ||

k+1 k+1 | k+l( |

- Xy Dby g,

Iterating this inequality from k = £ to k = i-1 yields

(2.14) % - x|l < [Ix-x,| || (l+hj)'l +

i
X 8 S II (1+h )b ([l x-x, + Moty || - [lx-x )
j m=j

]= 1+ hm)'l)hjn zj".

0
Since Z hj =, the first term on the right of (2.14) tends to zero as i - »,
j=i

The third term on the right also tends to zero as i - by the dominated con-
vergence theorem (each term individually tends to -0 and {hj I 2 |} is a
dominating summable sequence). Finally, by (2.6) and

lim (|| x- X, + Mx+y) || - ||x-xj 1)y = lx-x_ + Mx+y)| - fx-x_ |

j-.oo

we obtain upon letting i - in (2, 14) that
-1
=% Il < A7 (flx-x, + Mxay) || - [[x-x_])
or, after rearranging,
AN fx - x || € [|x-x, + Mx+y)

which is the desired inequality.

R
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Proof of Theorem 3. We begin by showing that if B is accretive and satis-

fies (R) then there is an admissible sequence for 0 ¢ R(I + B).
For xe D(B) and ¢ >0 let A(x,e) be the set of those numbers A > 0
for which there exists X, and Y, € Bx\ such that
Hx)\ + X(x)\ + y)\)—x" < x (\)e

where x(\) = min(1,\) for Xe (0,®]. A(x,e) is nonempty by condition (R),

and we define \(x,e) = supA(x,e). Let x e D(B) be arbitrary and suppose

0
XKoo en Xy ) and hl’h-z’ a2 ’hk-l have been chosen. Set
k-1
(2.15) e, = exp(- ) h -1
j=1
and choose hk = 0 X, » yk € Bxk so that

X(ZMx, ;e )) < h <@
(2.16)
I X, - X gt hk(xk + yk) I < x(h e, .

In this way we get infinite sequences {hk}, {xk}, {yk}. Now by (2.16),

(2.15) and with 2, as in (2.1),

o0 Q0
00 -
(2.17) Z hk"zk" < Z x(h e, < f e % ds < w,
k=] k=l 0

Thus, if ; B waty {xk} is admissible and we are done. Let o = hl . g

+h . Assuming lim o, =o_ <% we will reach a contradiction by use of a

now standard idea of Nagumo (6], and thus complete the proof of (a). By
Lemma 3, x = ‘ii_l.nw X, exists. By (R) there exists X\, ¢ (0,®), %,y ¢ Bx
such that
-0+ 1)
||>-c-x°°+ k°(§+§)|| <e x(.\o';.

-10-
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Then

E e &
|| x-x +)\0(y+x)|| < e x(\0)=x(>\0)ek-

k-1
for all k large enough. Hence, by (2.16), th > x(xo) for large k , contra-

i = iie #B.- <o,
dicting LY nl+ + K ..

To prove part (b), we use (R) to assert the existence of sequences

xi > 00 u, e D(B), v, € Bui such that
.
——-;I-—+(ui+vi)||»0.

(2.18) i

By Theorem l(b) we also have

u - - X

u
i © i
(2.19) TR s i B9

A

+(u +v)|.
i ¢ i i

Combining (2.18) and (2.19) we conclude x;l(ui - xoo) -0 as well es
u, - X and subsequently, from (2.18), ui + v1 -+ 0. Thus 0e R(I + B)
and 0e¢ R(I + B) if B is closed.

Proof of Theorem 2. We first show that (4), (5) defines an admissible se-

quence, With yk = Bxk we have, by (4), (5)

w0 o0
y' - ) = -
L My - x e h 00 by = Lohy I - Bl
k=0 k=0
o0 k
< Z th exp( - Z hj -1) < 1,
k=0 j=
o0
Thus it is sufficient to show Z h. = o, Suppose o, =h +... +h_ =~
K20 j k 1 k
T, <o, Then xk converges to a limit X, by Lemma 3, Since B is con-
tinuous there is an integer n such that
n
[I B( zn X, - Bx,) - Bx_ | < exp(-o_ -1 .
1 +2 142
Then also

«]ll-

%
b
9
$




n
2
Il B( X, - Bx,) - Bx || < exp(-(h, + ... + h )-l)
H_?_n k 1+2n k k 1 k
for large k and therefore nk <n for large k . But then v » h1 A

hk - o by (4), a contradiction,
Let {xk} be an admissible sequence for 0 ¢ R(I + B) and (2.1) hold
o0

with kz—l hk"zk“ <» . Then x, - x_ and summing (2.1) fromk =m to

k
k =n-1 yields

% h, xm-xn 1 n
R o - (%, +yj) s i 5 T -0 Z hkzk 2
j=m+l n m n m n m j=m+l

where uj = h1 e aiit hj. The right hand side above tends to zero as n,m -

subjectto ¢ - 2> 1, while the left hand side consists of convex combina-
tions of x). + yj. Thus if xj + yj has a limit as j - ¢, it must be zero.
If B is continuous and DX(B) is closed, X ¢ D(B) and xj + ij - B

proving (b).

Proof of Propositionl., Let 0e¢ R(I + B). Let {ak} be an arbitrary sum-

mable sequence of positive numbers and {hk} a sequence of positive num-

Q0 0
bers satisfying Z hk ol 0 Z akhk <o , Choose X, € D(B), Y ¢ Bxk
k=1 k=1 -

such that || X, + Yy | < @, . Then we claim {xk} is an admissible sequence

for 0 ¢ R(I + B) and we may use {hk} in (3). Indeed

Ier = %l < 1%y = % * Vg = Vil S I%p* Vil 4 lIx + v

S Mt %
SO
o0 00
kgl e X5 P et | < kz:: a2 e i |
0
SZZak+Z akhk<°°'

kel k=1

P
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Thus {xk} is admissible,
In the proof of Theorem 2 we showed that certain convex combinations
of x, +
¥
of R(I + B) if there is an admissible sequence. This completes the proof.
!

converged to 0 if (3) holds, so 0 is in the closed convex hull

Remarks: From the proof of proposition | we see that if 0 ¢ ﬁ([ + B) then

there exist admissible sequences with arbitrary associated sequences {hk}

satisfying Z hk =, It is worth noting that if (3) holds and irl1<f hk >0 then

0e¢ R(I + B) for
Myl + ¥y = 06 1 = % ? B F Ve - - X
and the first term on the right tends to 0 by (3) (ii) and the second does by

Theorem 1, so x, +y, - 0. One can also show that x, + y, = 0 if
& k k k k

Z ||zku < o,

k=l
3. Applications.

In this section we deduce two known general theorems on accretive
sets in Banach space as simple consequences of our results. We note that
the previously known proofs of these theorems were all dependent on the
existence of a solution to the initial value problem (1).

We start by introducing the following conditions:

(Rl) lim ir;f x'l dist(R(I + NA); x - A\y) =0 V¥V xe DA, ve X.
A=0

Note that it is sufficient for (Rl) to hold only for every y in a dense sub-
set of X in order for it to hold for every y ¢ X.
Lemma 4.

Let A be accretive and satiafy (R)). If P:D(A)C X = X is continuous,

then A+P satlsﬁes(Rl).

-13.




Proof:
If A satisfies (Rl) then for every y e X there are sequences xi -~ 0

and yie Ax1 such that

-1
- - »' K - - 00,
(3.1) )\i (xi+)\iyi (x xiy iPx)) 0 as i
But
x-l(x + Ay +)\Px-(x-,\y))=h'l(x + ANy, ~(x-\y-A\Px))
; Th i - i'i U | i i i'i i i
+ le-Px.

In order to prove that A+P satisfies (Rl) it is therefore sufficient to show
that X = x as i+, From the accretiveness of A we have
"XI-U"_<,||X1-U+Xi(y1-v)" for ve Au
and from (3.1) we then have
lim sup "xi—u" < lim sup|fx ~ u - MY + Bx + V) = fx-u|

i~ 00 is» 00

for all ue D(A) and thus X, =~ X.
Let z ¢ X be arbitrary. Taking P =1-z in the previous lemma, it
follows that Az = A4l - z satisfies condition (Rl) and hence also (R) of

Section | and therefore by Theorem 3 we have:

Theorem (Y, Kobayashi [3]).

Let A be accretive and satisfy (R)). Then A (the closure of A) is
m-accretive,
We conclude with the following general perturbation theorem.

Theorem (Y. Kobayashi [3]).

Let A be accretive and P : D{A)CX - X be continuous. If A +P is

accretive, then it is m-accretive if and only if A is m-accretive.

-14-




Proof:

Let A be m-accretive then A is closed and satisfies (Rl)’ There -

fore, by Lemma 4, A+P satisfies (Rl). Since, by the continuity of P, A+P is

closed and by assumption it is accretive, it follows from the previous theorem
that A+P is m-accretive. If A+P is m-accretive one has that A = (A+P)-P
is as well by the above.

The last theorem is a considerable generalization of the theorem of
R. Martin which was stated in the introduction. Indeed Martin's theorem is
| obtained by taking A=0 on X. G. Webb (9] proved the above perturbation
result assuming that A was linear m-accretive with _E(_A_) = X. Subsequently
V. Barbu [2] generalized Webb's result to the case where A was a general
m-accretive operator and P : X - X was continuous. Finally Y. Kobayashi

[3] proved the above theorem,
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